大會演講I 


演講題目:全球淨零排放趨勢及我國因應作為

沈志修常務次長

環境部常務次長

學歷

國立中興大學環境工程學系畢業

國立臺灣大學環境工程碩士

國立臺灣大學環境工程博士

經歷

環境部常務次長 (民國112年8月-迄今)

行政院環境保護署副署長 (民國108年1月-112年8月)

桃園市政府環境保護局局長 (民國103年12月-108年1月)

行政院環境保護署大隊長 (民國103年8月-103年12月)

行政院環境保護署副總隊長 (民國101年3月-103年8月)

行政院環境保護署副處長(民國99年6月-101年3月)

摘要

大氣溫室氣體濃度持續升高,全球平均溫度屢創歷史新高,面對氣候變遷,追求淨零排放,是臺灣與國際社會共同努力的目標,如何加速能源轉型及產業脫碳、擴增綠色低碳能源發展應用、解決氣候融資課題、穩健公正轉型、提升極端氣候調適量能、強化各界減碳企圖心等都是全球共同面對的挑戰。 

我國2022年陸續公布「2050淨零排放路徑藍圖」及「淨零轉型12項關鍵戰略行動計畫」,並在「科技研發」和「氣候法制」兩大治理基礎上,加速推動能源、產業、生活及社會等四大轉型工作,同時啟動淨零科技方案,未來投入在永續及前瞻能源、低(減)碳、負碳、循環、人文社會科學等五大領域,落實淨零科技研發與執行。「氣候變遷因應法」於2023年2月公布施行,已將「2050淨零排放」目標入法,從政策宣示提升到法律規範,展現減碳決心,並逐步建構碳定價機制及多元經濟誘因,引領企業低碳永續發展。 

臺灣為出口貿易導向的經濟體,企業經營深受國際情勢與規範影響,面對全球碳邊境管制措施與綠化供應鏈要求的發展趨勢,政府已建立跨部會協調機制,協助產業瞭解其產品碳含量、降低產品碳含量並推動碳定價制度,同時創造企業減碳誘因,並促進低碳科技的研發及相關人才的培育,帶動整體綠色經濟的良性循環。 


大會演講II

演講題目:台灣化學工程的前景 ( The Future of Chemical Engineering in Taiwan)

廖俊智院長

中央研究院院長

學歷

國立臺灣大學化學工程系學士

美國威斯康辛大學麥迪生校區化學工程博士

經歷

2021 年 6 月 21 日受 總統任命為中央研究院第十二任院長         
2016 年 6 月 21 日受 總統任命為中央研究院第十一任院長          
中央研究院生物化學研究所特聘研究員 (2016)          

美國加州大學洛杉磯校區

化學暨生物分子工程系教授(1997-2016)
校長講座教授(2008-2011)
系主任(2012-2016)生物工程系主任(2015-2016)          


美國德州農工大學 (Texas A&M University)        
化學工程系助理教授(1990-1993)
副教授(1993-1997
)
         

美國紐約州羅徹斯特柯達公司 (Eastman Kodak Company)
研究科學家 (1987-1989)

Abstract

The field of chemical engineering, with a rich history spanning over a century, has traditionally played a pivotal role in driving global economic growth and societal transformations. Thanks to their solid and broad training, chemical engineers have assumed key roles across various industries, businesses, and government sectors, often holding leadership positions. Despite this, in recent decades, the prominence of chemical engineering has waned, accompanied by a decline in student interest. This decline coincides with several challenges confronting the profession, such as the imperative of achieving net-zero emissions by 2050, the rapid advancement of artificial intelligence, and a shortage of workforce in Taiwan. 

As society grapples with these pressing issues, it becomes imperative to examine how can chemical engineers actively address challenges like achieving net-zero emissions and navigate the transformative landscape of artificial intelligence. Moreover, in the face of a changing industrial and technological landscape, how should educational curricula adapt to ensure that future chemical engineers are equipped to meet evolving challenges 

These questions serve as the starting point for our discussion, as we explore the role of chemical engineering in tackling contemporary challenges and consider necessary adjustments to educational frameworks. 


 大會演講III

演講題目:Live Cell Rheometry Applied to Human Health

Gerald G. Fuller
Chemical Engineering, Stanford University

Biography

Gerald Fuller is the Fletcher-Jones Professor of Chemical Engineering at Stanford University. He joined Stanford in 1980 having received his Ph.D. from Caltech and his B.Sc. from University of Calgary. His research interests lie in the subjects of interfacial fluid mechanics and rheology with a particular focus on problems in biophysical phenomena, foams, and emulsions. His work has teen recognized by receipt of the Bingham Medal of the Society of Rheology, election to the National Academy of Engineering, and Fellowship in the American Academy of Arts and Science. He has been granted honarry doctorates from the Universities of Crete and Leuven. He presently serves as the General Secretary of the International Committee on Rheology.

Abstract

Human tissue is in the category of “soft matter” and its rheological properties are of interest to understanding many problems in human health. A rheometer, a device to establish the relationship between stress and deformation, has been developed for the purpose of interrogating the dynamic response of living cells under a variety of conditions. In this presentation, the application of the live cell rheometer (LCR) to two problems is described: (1) the friction between layers of corneal epithelial cells sliding against conjunctival cells and (2) the viscoelasticity of the mucus layer produced above bronchial epithelial cells.

Maintaining the stability of the tear film is essential to ocular health. Here we developed a mucin-deficient dry eye mimetic cell model to investigate the contributions of mucins and mucin-like glycoproteins to the interfacial, rheological, and adhesive properties of ocular epithelial surfaces. Cell-to-cell adhesion and sliding friction were directly measured using the LCR. It is demonstrated that membrane-tethered mucins are essential for biolubrication. Supplementation with recombinant human lubricin, a mucin-like glycoprotein, restored the lubrication function induced by the lack of cell surface mucins in a dose-dependent manner.

Mucus that lines the lungs acts as the primary defense against inhaled foreign particles and infectious agents. Effective mucus clearance, and thus removal of the trapped invaders, is vital for healthy airway function. Asthma is a chronic inflammatory disorder associated with the inflammatory cytokine IL-13 that results in mucus hypersecretion of MUC5AC. The LCR is used to measure the creep compliance of mucus layers in the absence and presence of IL-13. It is found that inflammatory conditions transition the mucus from a viscoelastic liquid response to a viscoelastic solid. With this method, we demonstrate the ability to study mucus rheology in a physiologically relevant environment, examine phenotypic differences in mucus rheology, and rapidly test drugs on mucociliary mechanics.

重要日期

報名及開始投稿
06月15
學生競賽摘要截稿 
09月22日

延長至 09月29日

非競賽論文摘要截稿
10月13日

延長至 10月20日

論文摘要接受通知
10月20日
延後於10月27日通知
早鳥報名截止日期
10月27日
延長至11月03日
網站報名截止
11月03日
延長至11月17日

Registration


Abstract Submission